MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. 1350 Aluminum

Both 2011A aluminum and 1350 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 6.8 to 16
1.4 to 30
Fatigue Strength, MPa 75 to 100
24 to 50
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190 to 250
44 to 110
Tensile Strength: Ultimate (UTS), MPa 310 to 410
68 to 190
Tensile Strength: Yield (Proof), MPa 140 to 310
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 660
660
Melting Onset (Solidus), °C 550
650
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
230
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 96
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
4.4 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
50
Strength to Weight: Axial, points 28 to 37
7.0 to 19
Strength to Weight: Bending, points 33 to 40
14 to 27
Thermal Diffusivity, mm2/s 49
96
Thermal Shock Resistance, points 14 to 18
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
99.5 to 100
Bismuth (Bi), % 0.2 to 0.6
0
Boron (B), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.010
Copper (Cu), % 4.5 to 6.0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 0.010
Silicon (Si), % 0 to 0.4
0 to 0.1
Titanium (Ti), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.3
0 to 0.050
Residuals, % 0
0 to 0.1