MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. 3005 Aluminum

Both 2011A aluminum and 3005 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 6.8 to 16
1.1 to 16
Fatigue Strength, MPa 75 to 100
53 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 190 to 250
84 to 150
Tensile Strength: Ultimate (UTS), MPa 310 to 410
140 to 270
Tensile Strength: Yield (Proof), MPa 140 to 310
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 660
660
Melting Onset (Solidus), °C 550
640
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
42
Electrical Conductivity: Equal Weight (Specific), % IACS 96
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.8
Embodied Carbon, kg CO2/kg material 7.9
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
18 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
49
Strength to Weight: Axial, points 28 to 37
14 to 27
Strength to Weight: Bending, points 33 to 40
21 to 33
Thermal Diffusivity, mm2/s 49
64
Thermal Shock Resistance, points 14 to 18
6.0 to 12

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
95.7 to 98.8
Bismuth (Bi), % 0.2 to 0.6
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 4.5 to 6.0
0 to 0.3
Iron (Fe), % 0 to 0.5
0 to 0.7
Lead (Pb), % 0.2 to 0.6
0
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
1.0 to 1.5
Silicon (Si), % 0 to 0.4
0 to 0.6
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.3
0 to 0.25
Residuals, % 0
0 to 0.15