MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. 512.0 Aluminum

Both 2011A aluminum and 512.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is 512.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 6.8 to 16
2.0
Fatigue Strength, MPa 75 to 100
58
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 310 to 410
130
Tensile Strength: Yield (Proof), MPa 140 to 310
83

Thermal Properties

Latent Heat of Fusion, J/g 390
420
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 660
630
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
38
Electrical Conductivity: Equal Weight (Specific), % IACS 96
130

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
50
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
51
Strength to Weight: Axial, points 28 to 37
14
Strength to Weight: Bending, points 33 to 40
22
Thermal Diffusivity, mm2/s 49
60
Thermal Shock Resistance, points 14 to 18
6.1

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
90.6 to 95.1
Bismuth (Bi), % 0.2 to 0.6
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 4.5 to 6.0
0 to 0.35
Iron (Fe), % 0 to 0.5
0 to 0.6
Lead (Pb), % 0.2 to 0.6
0
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0
0 to 0.8
Silicon (Si), % 0 to 0.4
1.4 to 2.2
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.3
0 to 0.35
Residuals, % 0
0 to 0.15