MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. AISI 301LN Stainless Steel

2011A aluminum belongs to the aluminum alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.8 to 16
23 to 51
Fatigue Strength, MPa 75 to 100
270 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 190 to 250
450 to 670
Tensile Strength: Ultimate (UTS), MPa 310 to 410
630 to 1060
Tensile Strength: Yield (Proof), MPa 140 to 310
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 190
890
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
180 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 28 to 37
22 to 38
Strength to Weight: Bending, points 33 to 40
21 to 30
Thermal Diffusivity, mm2/s 49
4.0
Thermal Shock Resistance, points 14 to 18
14 to 24

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.5 to 6.0
0
Iron (Fe), % 0 to 0.5
70.7 to 77.9
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0