MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. AWS E409Nb

2011A aluminum belongs to the aluminum alloys classification, while AWS E409Nb belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.8 to 16
23
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 310 to 410
500
Tensile Strength: Yield (Proof), MPa 140 to 310
380

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 96
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.9
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 28 to 37
18
Strength to Weight: Bending, points 33 to 40
18
Thermal Diffusivity, mm2/s 49
6.8
Thermal Shock Resistance, points 14 to 18
14

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 14
Copper (Cu), % 4.5 to 6.0
0 to 0.75
Iron (Fe), % 0 to 0.5
80.2 to 88.5
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0