MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. EN 1.0406 Steel

2011A aluminum belongs to the aluminum alloys classification, while EN 1.0406 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is EN 1.0406 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 6.8 to 16
23
Fatigue Strength, MPa 75 to 100
170
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 190 to 250
300
Tensile Strength: Ultimate (UTS), MPa 310 to 410
470
Tensile Strength: Yield (Proof), MPa 140 to 310
240

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
49
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 96
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
89
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 28 to 37
17
Strength to Weight: Bending, points 33 to 40
17
Thermal Diffusivity, mm2/s 49
13
Thermal Shock Resistance, points 14 to 18
15

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0.22 to 0.29
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 4.5 to 6.0
0
Iron (Fe), % 0 to 0.5
97.6 to 99.38
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0
0 to 0.045
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0