MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. EN 1.4378 Stainless Steel

2011A aluminum belongs to the aluminum alloys classification, while EN 1.4378 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is EN 1.4378 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.8 to 16
14 to 34
Fatigue Strength, MPa 75 to 100
340 to 550
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 190 to 250
510 to 680
Tensile Strength: Ultimate (UTS), MPa 310 to 410
760 to 1130
Tensile Strength: Yield (Proof), MPa 140 to 310
430 to 970

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 190
910
Melting Completion (Liquidus), °C 660
1390
Melting Onset (Solidus), °C 550
1350
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.1
7.6
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
470 to 2370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 28 to 37
28 to 41
Strength to Weight: Bending, points 33 to 40
24 to 31
Thermal Shock Resistance, points 14 to 18
16 to 23

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 4.5 to 6.0
0
Iron (Fe), % 0 to 0.5
61.2 to 69
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
11.5 to 14.5
Nickel (Ni), % 0
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0