MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. EN 1.4945 Stainless Steel

2011A aluminum belongs to the aluminum alloys classification, while EN 1.4945 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is EN 1.4945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 6.8 to 16
19 to 34
Fatigue Strength, MPa 75 to 100
230 to 350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 190 to 250
430 to 460
Tensile Strength: Ultimate (UTS), MPa 310 to 410
640 to 740
Tensile Strength: Yield (Proof), MPa 140 to 310
290 to 550

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 190
920
Melting Completion (Liquidus), °C 660
1490
Melting Onset (Solidus), °C 550
1440
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 96
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 3.1
8.1
Embodied Carbon, kg CO2/kg material 7.9
5.0
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
130 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
210 to 760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
24
Strength to Weight: Axial, points 28 to 37
22 to 25
Strength to Weight: Bending, points 33 to 40
20 to 22
Thermal Diffusivity, mm2/s 49
3.7
Thermal Shock Resistance, points 14 to 18
14 to 16

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
0
Bismuth (Bi), % 0.2 to 0.6
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 4.5 to 6.0
0
Iron (Fe), % 0 to 0.5
57.9 to 65.7
Lead (Pb), % 0.2 to 0.6
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
15.5 to 17.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
2.5 to 3.5
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0