MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. EN AC-43300 Aluminum

Both 2011A aluminum and EN AC-43300 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 6.8 to 16
3.4 to 6.7
Fatigue Strength, MPa 75 to 100
76 to 77
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 310 to 410
280 to 290
Tensile Strength: Yield (Proof), MPa 140 to 310
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 660
600
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40
Electrical Conductivity: Equal Weight (Specific), % IACS 96
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.5
Embodied Carbon, kg CO2/kg material 7.9
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
300 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 44
54
Strength to Weight: Axial, points 28 to 37
31 to 32
Strength to Weight: Bending, points 33 to 40
37 to 38
Thermal Diffusivity, mm2/s 49
59
Thermal Shock Resistance, points 14 to 18
13 to 14

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
88.9 to 90.8
Bismuth (Bi), % 0.2 to 0.6
0
Copper (Cu), % 4.5 to 6.0
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.19
Lead (Pb), % 0.2 to 0.6
0
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0 to 0.4
9.0 to 10
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.3
0 to 0.070
Residuals, % 0
0 to 0.1

Comparable Variants