MakeItFrom.com
Menu (ESC)

2011A Aluminum vs. C19400 Copper

2011A aluminum belongs to the aluminum alloys classification, while C19400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2011A aluminum and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 6.8 to 16
2.3 to 37
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 190 to 250
210 to 300
Tensile Strength: Ultimate (UTS), MPa 310 to 410
310 to 630
Tensile Strength: Yield (Proof), MPa 140 to 310
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 660
1090
Melting Onset (Solidus), °C 550
1080
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 130
260
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 96
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 3.1
8.9
Embodied Carbon, kg CO2/kg material 7.9
2.6
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 40
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 670
41 to 1140
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 44
18
Strength to Weight: Axial, points 28 to 37
9.7 to 20
Strength to Weight: Bending, points 33 to 40
11 to 18
Thermal Diffusivity, mm2/s 49
75
Thermal Shock Resistance, points 14 to 18
11 to 22

Alloy Composition

Aluminum (Al), % 91.5 to 95.1
0
Bismuth (Bi), % 0.2 to 0.6
0
Copper (Cu), % 4.5 to 6.0
96.8 to 97.8
Iron (Fe), % 0 to 0.5
2.1 to 2.6
Lead (Pb), % 0.2 to 0.6
0 to 0.030
Phosphorus (P), % 0
0.015 to 0.15
Silicon (Si), % 0 to 0.4
0
Zinc (Zn), % 0 to 0.3
0.050 to 0.2
Residuals, % 0
0 to 0.2