MakeItFrom.com
Menu (ESC)

2014 Aluminum vs. EN 1.4982 Stainless Steel

2014 aluminum belongs to the aluminum alloys classification, while EN 1.4982 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014 aluminum and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.5 to 16
28
Fatigue Strength, MPa 90 to 160
420
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 130 to 290
490
Tensile Strength: Ultimate (UTS), MPa 190 to 500
750
Tensile Strength: Yield (Proof), MPa 100 to 440
570

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 210
860
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.1
4.9
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1130
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6 to 56
190
Resilience: Unit (Modulus of Resilience), kJ/m3 76 to 1330
830
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 18 to 46
27
Strength to Weight: Bending, points 25 to 46
23
Thermal Diffusivity, mm2/s 58
3.4
Thermal Shock Resistance, points 8.4 to 22
17

Alloy Composition

Aluminum (Al), % 90.4 to 95
0
Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0 to 0.1
14 to 16
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.7
61.8 to 69.7
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
5.5 to 7.0
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.15 to 0.4
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0