MakeItFrom.com
Menu (ESC)

2014A Aluminum vs. EN 1.4596 Stainless Steel

2014A aluminum belongs to the aluminum alloys classification, while EN 1.4596 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2014A aluminum and the bottom bar is EN 1.4596 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 210 to 490
1030 to 1600

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 210
790
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.1
3.5
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1140
130

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 19 to 45
36 to 56
Strength to Weight: Bending, points 26 to 46
29 to 39
Thermal Shock Resistance, points 9.0 to 22
35 to 54

Alloy Composition

Aluminum (Al), % 90.8 to 95
0.8 to 1.1
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
11.5 to 12.5
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 0.5
73.4 to 76.4
Magnesium (Mg), % 0.2 to 0.8
0
Manganese (Mn), % 0.4 to 1.2
0 to 0.1
Molybdenum (Mo), % 0
1.9 to 2.2
Nickel (Ni), % 0 to 0.1
9.2 to 10.2
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0.5 to 0.9
0 to 0.1
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.15
0.28 to 0.4
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0