MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. EN 1.4028 Stainless Steel

2017A aluminum belongs to the aluminum alloys classification, while EN 1.4028 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is EN 1.4028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.2 to 14
11 to 17
Fatigue Strength, MPa 92 to 130
230 to 400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 120 to 270
410 to 550
Tensile Strength: Ultimate (UTS), MPa 200 to 460
660 to 930
Tensile Strength: Yield (Proof), MPa 110 to 290
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 220
760
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.2
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1140
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
94 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
380 to 1360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 19 to 42
24 to 33
Strength to Weight: Bending, points 26 to 44
22 to 27
Thermal Diffusivity, mm2/s 56
8.1
Thermal Shock Resistance, points 8.9 to 20
23 to 32

Alloy Composition

Aluminum (Al), % 91.3 to 95.5
0
Carbon (C), % 0
0.26 to 0.35
Chromium (Cr), % 0 to 0.1
12 to 14
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
83.1 to 87.7
Magnesium (Mg), % 0.4 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants