MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. Grade 5 Titanium

2024 aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 4.0 to 16
8.6 to 11
Fatigue Strength, MPa 90 to 180
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Shear Strength, MPa 130 to 320
600 to 710
Tensile Strength: Ultimate (UTS), MPa 200 to 540
1000 to 1190
Tensile Strength: Yield (Proof), MPa 100 to 490
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 200
330
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 500
1650
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 120
6.8
Thermal Expansion, µm/m-K 23
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.0
4.4
Embodied Carbon, kg CO2/kg material 8.3
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
3980 to 5880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 18 to 50
62 to 75
Strength to Weight: Bending, points 25 to 49
50 to 56
Thermal Diffusivity, mm2/s 46
2.7
Thermal Shock Resistance, points 8.6 to 24
76 to 91

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.5
0
Titanium (Ti), % 0 to 0.15
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.4

Comparable Variants