MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. C90400 Bronze

2024 aluminum belongs to the aluminum alloys classification, while C90400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is C90400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 4.0 to 16
24
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 200 to 540
310
Tensile Strength: Yield (Proof), MPa 100 to 490
180

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
990
Melting Onset (Solidus), °C 500
850
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 120
75
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
12
Electrical Conductivity: Equal Weight (Specific), % IACS 90
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.3
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1140
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
65
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
150
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 18 to 50
10
Strength to Weight: Bending, points 25 to 49
12
Thermal Diffusivity, mm2/s 46
23
Thermal Shock Resistance, points 8.6 to 24
11

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
86 to 89
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.010
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
1.0 to 5.0
Zirconium (Zr), % 0 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.7