MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. ASTM A182 Grade F3VCb

2030 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F3VCb belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.0
21
Fatigue Strength, MPa 91 to 110
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 220 to 250
420
Tensile Strength: Ultimate (UTS), MPa 370 to 420
670
Tensile Strength: Yield (Proof), MPa 240 to 270
460

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
470
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.5
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.4
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1140
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
120
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 33 to 38
24
Strength to Weight: Bending, points 37 to 40
22
Thermal Diffusivity, mm2/s 50
11
Thermal Shock Resistance, points 16 to 19
19

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0 to 0.1
2.7 to 3.3
Copper (Cu), % 3.3 to 4.5
0 to 0.25
Iron (Fe), % 0 to 0.7
93.8 to 95.8
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0.015 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0 to 0.015
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0