MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. 6061 Aluminum

Both 204.0 aluminum and 6061 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 5.7 to 7.8
3.4 to 20
Fatigue Strength, MPa 63 to 77
58 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 230 to 340
130 to 410
Tensile Strength: Yield (Proof), MPa 180 to 220
76 to 370

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 580
580
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
43
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
3.8 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
42 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 21 to 31
13 to 42
Strength to Weight: Bending, points 28 to 36
21 to 45
Thermal Diffusivity, mm2/s 46
68
Thermal Shock Resistance, points 12 to 18
5.7 to 18

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
95.9 to 98.6
Chromium (Cr), % 0
0.040 to 0.35
Copper (Cu), % 4.2 to 5.0
0.15 to 0.4
Iron (Fe), % 0 to 0.35
0 to 0.7
Magnesium (Mg), % 0.15 to 0.35
0.8 to 1.2
Manganese (Mn), % 0 to 0.1
0 to 0.15
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.2
0.4 to 0.8
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants