MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. 6110A Aluminum

Both 204.0 aluminum and 6110A aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is 6110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 5.7 to 7.8
11 to 18
Fatigue Strength, MPa 63 to 77
140 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 230 to 340
360 to 470
Tensile Strength: Yield (Proof), MPa 180 to 220
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 580
600
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
160
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
42
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
47 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
450 to 1300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 21 to 31
36 to 47
Strength to Weight: Bending, points 28 to 36
41 to 48
Thermal Diffusivity, mm2/s 46
65
Thermal Shock Resistance, points 12 to 18
16 to 21

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
94.8 to 98
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 4.2 to 5.0
0.3 to 0.8
Iron (Fe), % 0 to 0.35
0 to 0.5
Magnesium (Mg), % 0.15 to 0.35
0.7 to 1.1
Manganese (Mn), % 0 to 0.1
0.3 to 0.9
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.2
0.7 to 1.1
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants