MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. 7049A Aluminum

Both 204.0 aluminum and 7049A aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 5.7 to 7.8
5.0 to 5.7
Fatigue Strength, MPa 63 to 77
180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 230 to 340
580 to 590
Tensile Strength: Yield (Proof), MPa 180 to 220
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 390
370
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 580
430
Specific Heat Capacity, J/kg-K 880
850
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 19
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
40
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
3.1
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
1800 to 1990
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
44
Strength to Weight: Axial, points 21 to 31
52 to 53
Strength to Weight: Bending, points 28 to 36
50 to 51
Thermal Diffusivity, mm2/s 46
50
Thermal Shock Resistance, points 12 to 18
25

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
84.6 to 89.5
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 4.2 to 5.0
1.2 to 1.9
Iron (Fe), % 0 to 0.35
0 to 0.5
Magnesium (Mg), % 0.15 to 0.35
2.1 to 3.1
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.2
0 to 0.4
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.25
Zinc (Zn), % 0 to 0.1
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants