MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. ACI-ASTM CK35MN Steel

204.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK35MN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 120
190
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.7 to 7.8
40
Fatigue Strength, MPa 63 to 77
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 230 to 340
650
Tensile Strength: Yield (Proof), MPa 180 to 220
310

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.0
5.9
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
210
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 31
22
Strength to Weight: Bending, points 28 to 36
21
Thermal Diffusivity, mm2/s 46
3.3
Thermal Shock Resistance, points 12 to 18
14

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 4.2 to 5.0
0 to 0.4
Iron (Fe), % 0 to 0.35
43.4 to 51.8
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0 to 0.050
20 to 22
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0