MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. ASTM A182 Grade F10

204.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F10 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is ASTM A182 grade F10.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 120
190
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.7 to 7.8
34
Fatigue Strength, MPa 63 to 77
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 230 to 340
630
Tensile Strength: Yield (Proof), MPa 180 to 220
230

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 580
1370
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
15
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
17

Otherwise Unclassified Properties

Base Metal Price, % relative 11
18
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.6
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1150
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
170
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 21 to 31
22
Strength to Weight: Bending, points 28 to 36
21
Thermal Shock Resistance, points 12 to 18
18

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
7.0 to 9.0
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
66.5 to 72.4
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.8
Nickel (Ni), % 0 to 0.050
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.0 to 1.4
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0