MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. ASTM A182 Grade F911

204.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F911 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 120
220
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.7 to 7.8
20
Fatigue Strength, MPa 63 to 77
350
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 230 to 340
690
Tensile Strength: Yield (Proof), MPa 180 to 220
500

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 580
1440
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1150
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
130
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 21 to 31
24
Strength to Weight: Bending, points 28 to 36
22
Thermal Diffusivity, mm2/s 46
6.9
Thermal Shock Resistance, points 12 to 18
19

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0 to 0.020
Boron (B), % 0
0.00030 to 0.0060
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
86.2 to 88.9
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.050
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.040 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0