MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. EN 1.4034 Stainless Steel

204.0 aluminum belongs to the aluminum alloys classification, while EN 1.4034 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is EN 1.4034 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.7 to 7.8
11 to 14
Fatigue Strength, MPa 63 to 77
230 to 400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 230 to 340
690 to 900
Tensile Strength: Yield (Proof), MPa 180 to 220
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
770
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.0
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
81 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
400 to 1370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 31
25 to 32
Strength to Weight: Bending, points 28 to 36
22 to 27
Thermal Diffusivity, mm2/s 46
8.1
Thermal Shock Resistance, points 12 to 18
24 to 32

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0
12.5 to 14.5
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
83 to 87.1
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0