MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. EN 1.4938 Stainless Steel

204.0 aluminum belongs to the aluminum alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.7 to 7.8
16 to 17
Fatigue Strength, MPa 63 to 77
390 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 230 to 340
870 to 1030
Tensile Strength: Yield (Proof), MPa 180 to 220
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
1050 to 1920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 31
31 to 37
Strength to Weight: Bending, points 28 to 36
26 to 29
Thermal Diffusivity, mm2/s 46
8.1
Thermal Shock Resistance, points 12 to 18
30 to 35

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
80.5 to 84.8
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.050
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0