MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. Grade 24 Titanium

204.0 aluminum belongs to the aluminum alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.7 to 7.8
11
Fatigue Strength, MPa 63 to 77
550
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 230 to 340
1010
Tensile Strength: Yield (Proof), MPa 180 to 220
940

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 650
1610
Melting Onset (Solidus), °C 580
1560
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 19
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
2.0

Otherwise Unclassified Properties

Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 8.0
43
Embodied Energy, MJ/kg 150
710
Embodied Water, L/kg 1150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
4160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 21 to 31
63
Strength to Weight: Bending, points 28 to 36
50
Thermal Diffusivity, mm2/s 46
2.9
Thermal Shock Resistance, points 12 to 18
72

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 4.2 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.35
0 to 0.4
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4