MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. Grade Ti-Pd8A Titanium

204.0 aluminum belongs to the aluminum alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 120
200
Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.7 to 7.8
13
Fatigue Strength, MPa 63 to 77
260
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 230 to 340
500
Tensile Strength: Yield (Proof), MPa 180 to 220
430

Thermal Properties

Latent Heat of Fusion, J/g 390
420
Maximum Temperature: Mechanical, °C 170
320
Melting Completion (Liquidus), °C 650
1660
Melting Onset (Solidus), °C 580
1610
Specific Heat Capacity, J/kg-K 880
540
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 19
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
6.9

Otherwise Unclassified Properties

Density, g/cm3 3.0
4.5
Embodied Carbon, kg CO2/kg material 8.0
49
Embodied Energy, MJ/kg 150
840
Embodied Water, L/kg 1150
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
65
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 21 to 31
31
Strength to Weight: Bending, points 28 to 36
31
Thermal Diffusivity, mm2/s 46
8.6
Thermal Shock Resistance, points 12 to 18
39

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 4.2 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.35
0 to 0.25
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.050
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
98.8 to 99.9
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4