MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. SAE-AISI 4340M Steel

204.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 4340M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is SAE-AISI 4340M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 120
710
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.7 to 7.8
6.0
Fatigue Strength, MPa 63 to 77
690
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 230 to 340
2340
Tensile Strength: Yield (Proof), MPa 180 to 220
1240

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
38
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.9
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1150
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
4120
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 31
84
Strength to Weight: Bending, points 28 to 36
51
Thermal Diffusivity, mm2/s 46
10
Thermal Shock Resistance, points 12 to 18
70

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 1.0
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
93.3 to 94.8
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0.65 to 0.9
Molybdenum (Mo), % 0
0.35 to 0.45
Nickel (Ni), % 0 to 0.050
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.012
Silicon (Si), % 0 to 0.2
1.5 to 1.8
Sulfur (S), % 0
0 to 0.012
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0.050 to 0.1
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0