MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. C14520 Copper

204.0 aluminum belongs to the aluminum alloys classification, while C14520 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is C14520 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 5.7 to 7.8
9.0 to 9.6
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 230 to 340
290 to 330
Tensile Strength: Yield (Proof), MPa 180 to 220
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 650
1080
Melting Onset (Solidus), °C 580
1050
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 120
320
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
85
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
85

Otherwise Unclassified Properties

Base Metal Price, % relative 11
33
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
240 to 280
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 21 to 31
9.0 to 10
Strength to Weight: Bending, points 28 to 36
11 to 12
Thermal Diffusivity, mm2/s 46
94
Thermal Shock Resistance, points 12 to 18
10 to 12

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Copper (Cu), % 4.2 to 5.0
99.2 to 99.596
Iron (Fe), % 0 to 0.35
0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0.0040 to 0.020
Silicon (Si), % 0 to 0.2
0
Tellurium (Te), % 0
0.4 to 0.7
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0