MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. C44400 Brass

204.0 aluminum belongs to the aluminum alloys classification, while C44400 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is C44400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 230 to 340
350
Tensile Strength: Yield (Proof), MPa 180 to 220
120

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 650
940
Melting Onset (Solidus), °C 580
900
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 19
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
25
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
27

Otherwise Unclassified Properties

Base Metal Price, % relative 11
26
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1150
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
65
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 21 to 31
12
Strength to Weight: Bending, points 28 to 36
13
Thermal Diffusivity, mm2/s 46
35
Thermal Shock Resistance, points 12 to 18
12

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Antimony (Sb), % 0
0.020 to 0.1
Copper (Cu), % 4.2 to 5.0
70 to 73
Iron (Fe), % 0 to 0.35
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.050
0.9 to 1.2
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
25.2 to 29.1
Residuals, % 0
0 to 0.4