MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. C51000 Bronze

204.0 aluminum belongs to the aluminum alloys classification, while C51000 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is C51000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.7 to 7.8
2.7 to 64
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 230 to 340
330 to 780
Tensile Strength: Yield (Proof), MPa 180 to 220
130 to 750

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
1050
Melting Onset (Solidus), °C 580
960
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 120
77
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
18
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
18

Otherwise Unclassified Properties

Base Metal Price, % relative 11
33
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
7.0 to 490
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
75 to 2490
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 21 to 31
10 to 25
Strength to Weight: Bending, points 28 to 36
12 to 21
Thermal Diffusivity, mm2/s 46
23
Thermal Shock Resistance, points 12 to 18
12 to 28

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Copper (Cu), % 4.2 to 5.0
92.9 to 95.5
Iron (Fe), % 0 to 0.35
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.050
4.5 to 5.8
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0 to 0.3
Residuals, % 0
0 to 0.5