MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. C62400 Bronze

204.0 aluminum belongs to the aluminum alloys classification, while C62400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is C62400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.7 to 7.8
11 to 14
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 230 to 340
690 to 730
Tensile Strength: Yield (Proof), MPa 180 to 220
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 650
1040
Melting Onset (Solidus), °C 580
1030
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 120
59
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
12
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
27
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1150
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
68 to 77
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
320 to 550
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 21 to 31
23 to 25
Strength to Weight: Bending, points 28 to 36
21 to 22
Thermal Diffusivity, mm2/s 46
16
Thermal Shock Resistance, points 12 to 18
25 to 26

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
10 to 11.5
Copper (Cu), % 4.2 to 5.0
82.8 to 88
Iron (Fe), % 0 to 0.35
2.0 to 4.5
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0 to 0.3
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.2
0 to 0.25
Tin (Sn), % 0 to 0.050
0 to 0.2
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5