MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. C83600 Ounce Metal

204.0 aluminum belongs to the aluminum alloys classification, while C83600 ounce metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.7 to 7.8
21
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
39
Tensile Strength: Ultimate (UTS), MPa 230 to 340
250
Tensile Strength: Yield (Proof), MPa 180 to 220
120

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 650
1010
Melting Onset (Solidus), °C 580
850
Specific Heat Capacity, J/kg-K 880
370
Thermal Conductivity, W/m-K 120
72
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
15
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
15

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
43
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
70
Stiffness to Weight: Axial, points 13
6.7
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 21 to 31
7.9
Strength to Weight: Bending, points 28 to 36
10
Thermal Diffusivity, mm2/s 46
22
Thermal Shock Resistance, points 12 to 18
9.3

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 4.2 to 5.0
84 to 86
Iron (Fe), % 0 to 0.35
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.050
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.050
4.0 to 6.0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
4.0 to 6.0
Residuals, % 0
0 to 0.7