MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. C86300 Bronze

204.0 aluminum belongs to the aluminum alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 120
250
Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.7 to 7.8
14
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 230 to 340
850
Tensile Strength: Yield (Proof), MPa 180 to 220
480

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 650
920
Melting Onset (Solidus), °C 580
890
Specific Heat Capacity, J/kg-K 880
420
Thermal Conductivity, W/m-K 120
35
Thermal Expansion, µm/m-K 19
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
100
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
1030
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 21 to 31
30
Strength to Weight: Bending, points 28 to 36
25
Thermal Diffusivity, mm2/s 46
11
Thermal Shock Resistance, points 12 to 18
28

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
5.0 to 7.5
Copper (Cu), % 4.2 to 5.0
60 to 66
Iron (Fe), % 0 to 0.35
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
2.5 to 5.0
Nickel (Ni), % 0 to 0.050
0 to 1.0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.050
0 to 0.2
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
22 to 28
Residuals, % 0
0 to 1.0