MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. C87800 Brass

204.0 aluminum belongs to the aluminum alloys classification, while C87800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.7 to 7.8
25
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 230 to 340
590
Tensile Strength: Yield (Proof), MPa 180 to 220
350

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
920
Melting Onset (Solidus), °C 580
820
Specific Heat Capacity, J/kg-K 880
410
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
27
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
130
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
540
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 21 to 31
20
Strength to Weight: Bending, points 28 to 36
19
Thermal Diffusivity, mm2/s 46
8.3
Thermal Shock Resistance, points 12 to 18
21

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 4.2 to 5.0
80 to 84.2
Iron (Fe), % 0 to 0.35
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.15 to 0.35
0 to 0.010
Manganese (Mn), % 0 to 0.1
0 to 0.15
Nickel (Ni), % 0 to 0.050
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.050
0 to 0.25
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
12 to 16
Residuals, % 0
0 to 0.5