MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. C94500 Bronze

204.0 aluminum belongs to the aluminum alloys classification, while C94500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is C94500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 120
50
Elastic (Young's, Tensile) Modulus, GPa 71
92
Elongation at Break, % 5.7 to 7.8
12
Poisson's Ratio 0.33
0.36
Shear Modulus, GPa 27
34
Tensile Strength: Ultimate (UTS), MPa 230 to 340
170
Tensile Strength: Yield (Proof), MPa 180 to 220
83

Thermal Properties

Latent Heat of Fusion, J/g 390
160
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 650
940
Melting Onset (Solidus), °C 580
800
Specific Heat Capacity, J/kg-K 880
330
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 19
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
10
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 3.0
9.3
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
51
Embodied Water, L/kg 1150
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
17
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
37
Stiffness to Weight: Axial, points 13
5.5
Stiffness to Weight: Bending, points 46
16
Strength to Weight: Axial, points 21 to 31
5.2
Strength to Weight: Bending, points 28 to 36
7.4
Thermal Diffusivity, mm2/s 46
17
Thermal Shock Resistance, points 12 to 18
6.7

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Copper (Cu), % 4.2 to 5.0
66.7 to 78
Iron (Fe), % 0 to 0.35
0 to 0.15
Lead (Pb), % 0
16 to 22
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.050
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.050
6.0 to 8.0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0 to 1.2
Residuals, % 0 to 0.15
0