MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. S34565 Stainless Steel

204.0 aluminum belongs to the aluminum alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 120
200
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.7 to 7.8
39
Fatigue Strength, MPa 63 to 77
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 230 to 340
900
Tensile Strength: Yield (Proof), MPa 180 to 220
470

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 19
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
28
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
5.3
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
300
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 31
32
Strength to Weight: Bending, points 28 to 36
26
Thermal Diffusivity, mm2/s 46
3.2
Thermal Shock Resistance, points 12 to 18
22

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
43.2 to 51.6
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.050
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0