MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. S35000 Stainless Steel

204.0 aluminum belongs to the aluminum alloys classification, while S35000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is S35000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.7 to 7.8
2.3 to 14
Fatigue Strength, MPa 63 to 77
380 to 520
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 230 to 340
1300 to 1570
Tensile Strength: Yield (Proof), MPa 180 to 220
660 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 34
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 100
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
14
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
28 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
1070 to 3360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 21 to 31
46 to 56
Strength to Weight: Bending, points 28 to 36
34 to 38
Thermal Diffusivity, mm2/s 46
4.4
Thermal Shock Resistance, points 12 to 18
42 to 51

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
16 to 17
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
72.7 to 76.9
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0 to 0.050
4.0 to 5.0
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0

Comparable Variants