MakeItFrom.com
Menu (ESC)

204.0 Aluminum vs. S35135 Stainless Steel

204.0 aluminum belongs to the aluminum alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 204.0 aluminum and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.7 to 7.8
34
Fatigue Strength, MPa 63 to 77
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 230 to 340
590
Tensile Strength: Yield (Proof), MPa 180 to 220
230

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 19
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.8
Embodied Energy, MJ/kg 150
94
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
160
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 350
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 21 to 31
20
Strength to Weight: Bending, points 28 to 36
19
Thermal Shock Resistance, points 12 to 18
13

Alloy Composition

Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 4.2 to 5.0
0 to 0.75
Iron (Fe), % 0 to 0.35
28.3 to 45
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0 to 0.050
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0.4 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0