MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. 6065 Aluminum

Both 206.0 aluminum and 6065 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 8.4 to 12
4.5 to 11
Fatigue Strength, MPa 88 to 210
96 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 260
190 to 230
Tensile Strength: Ultimate (UTS), MPa 330 to 440
310 to 400
Tensile Strength: Yield (Proof), MPa 190 to 350
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
640
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
43
Electrical Conductivity: Equal Weight (Specific), % IACS 99
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
540 to 1040
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
49
Strength to Weight: Axial, points 30 to 40
31 to 40
Strength to Weight: Bending, points 35 to 42
36 to 43
Thermal Diffusivity, mm2/s 46
67
Thermal Shock Resistance, points 17 to 23
14 to 18

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 4.2 to 5.0
0.15 to 0.4
Iron (Fe), % 0 to 0.15
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.15 to 0.35
0.8 to 1.2
Manganese (Mn), % 0.2 to 0.5
0 to 0.15
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0.4 to 0.8
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15

Comparable Variants