MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. 6105 Aluminum

Both 206.0 aluminum and 6105 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 8.4 to 12
9.0 to 16
Fatigue Strength, MPa 88 to 210
95 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 260
120 to 170
Tensile Strength: Ultimate (UTS), MPa 330 to 440
190 to 280
Tensile Strength: Yield (Proof), MPa 190 to 350
120 to 270

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
180 to 190
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 99
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
25 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
100 to 550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 30 to 40
20 to 29
Strength to Weight: Bending, points 35 to 42
28 to 35
Thermal Diffusivity, mm2/s 46
72 to 79
Thermal Shock Resistance, points 17 to 23
8.6 to 12

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
97.2 to 99
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 4.2 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.35
Magnesium (Mg), % 0.15 to 0.35
0.45 to 0.8
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0.6 to 1.0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15