MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. A206.0 Aluminum

Both 206.0 aluminum and A206.0 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 8.4 to 12
4.2 to 10
Fatigue Strength, MPa 88 to 210
90 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 260
260
Tensile Strength: Ultimate (UTS), MPa 330 to 440
390 to 440
Tensile Strength: Yield (Proof), MPa 190 to 350
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
670
Melting Onset (Solidus), °C 570
550
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 19
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
30
Electrical Conductivity: Equal Weight (Specific), % IACS 99
90

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
440 to 1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
46
Strength to Weight: Axial, points 30 to 40
36 to 41
Strength to Weight: Bending, points 35 to 42
39 to 43
Thermal Diffusivity, mm2/s 46
48
Thermal Shock Resistance, points 17 to 23
17 to 19

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
93.9 to 95.7
Copper (Cu), % 4.2 to 5.0
4.2 to 5.0
Iron (Fe), % 0 to 0.15
0 to 0.1
Magnesium (Mg), % 0.15 to 0.35
0 to 0.15
Manganese (Mn), % 0.2 to 0.5
0 to 0.2
Nickel (Ni), % 0 to 0.050
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.050
Tin (Sn), % 0 to 0.050
0 to 0.050
Titanium (Ti), % 0.15 to 0.3
0.15 to 0.3
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants