MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. A444.0 Aluminum

Both 206.0 aluminum and A444.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 8.4 to 12
18
Fatigue Strength, MPa 88 to 210
37
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 330 to 440
160
Tensile Strength: Yield (Proof), MPa 190 to 350
66

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
160
Thermal Expansion, µm/m-K 19
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
41
Electrical Conductivity: Equal Weight (Specific), % IACS 99
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
24
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
31
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
53
Strength to Weight: Axial, points 30 to 40
17
Strength to Weight: Bending, points 35 to 42
25
Thermal Diffusivity, mm2/s 46
68
Thermal Shock Resistance, points 17 to 23
7.3

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
91.6 to 93.5
Copper (Cu), % 4.2 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.2
Magnesium (Mg), % 0.15 to 0.35
0 to 0.050
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
6.5 to 7.5
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15