MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. ACI-ASTM CA28MWV Steel

206.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
330
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.4 to 12
11
Fatigue Strength, MPa 88 to 210
470
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 330 to 440
1080
Tensile Strength: Yield (Proof), MPa 190 to 350
870

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 99
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
110
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
1920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
38
Strength to Weight: Bending, points 35 to 42
30
Thermal Diffusivity, mm2/s 46
6.6
Thermal Shock Resistance, points 17 to 23
40

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0.2 to 0.28
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
81.4 to 85.8
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0 to 0.050
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0