MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. ACI-ASTM CA40 Steel

206.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA40 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is ACI-ASTM CA40 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
310
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.4 to 12
10
Fatigue Strength, MPa 88 to 210
460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 330 to 440
910
Tensile Strength: Yield (Proof), MPa 190 to 350
860

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 570
1500
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.5
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
89
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
1910
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
33
Strength to Weight: Bending, points 35 to 42
27
Thermal Diffusivity, mm2/s 46
6.7
Thermal Shock Resistance, points 17 to 23
33

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
81.5 to 88.3
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0