MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. AISI 201L Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
190 to 320
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.4 to 12
22 to 46
Fatigue Strength, MPa 88 to 210
270 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 260
520 to 660
Tensile Strength: Ultimate (UTS), MPa 330 to 440
740 to 1040
Tensile Strength: Yield (Proof), MPa 190 to 350
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 570
1370
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1150
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
220 to 1570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
27 to 37
Strength to Weight: Bending, points 35 to 42
24 to 30
Thermal Diffusivity, mm2/s 46
4.0
Thermal Shock Resistance, points 17 to 23
16 to 23

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
67.9 to 75
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
5.5 to 7.5
Nickel (Ni), % 0 to 0.050
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0