MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. AISI 304LN Stainless Steel

206.0 aluminum belongs to the aluminum alloys classification, while AISI 304LN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is AISI 304LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
190 to 350
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.4 to 12
7.8 to 46
Fatigue Strength, MPa 88 to 210
200 to 440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 260
400 to 680
Tensile Strength: Ultimate (UTS), MPa 330 to 440
580 to 1160
Tensile Strength: Yield (Proof), MPa 190 to 350
230 to 870

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
16
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
83 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
140 to 1900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
21 to 41
Strength to Weight: Bending, points 35 to 42
20 to 31
Thermal Diffusivity, mm2/s 46
4.0
Thermal Shock Resistance, points 17 to 23
13 to 26

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.15
65 to 73.9
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.050
8.0 to 12
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0