MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. ASTM B817 Type I

206.0 aluminum belongs to the aluminum alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 8.4 to 12
4.0 to 13
Fatigue Strength, MPa 88 to 210
360 to 520
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 330 to 440
770 to 960
Tensile Strength: Yield (Proof), MPa 190 to 350
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 650
1600
Melting Onset (Solidus), °C 570
1550
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 19
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 3.0
4.4
Embodied Carbon, kg CO2/kg material 8.0
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
35
Strength to Weight: Axial, points 30 to 40
48 to 60
Strength to Weight: Bending, points 35 to 42
42 to 49
Thermal Diffusivity, mm2/s 46
2.9
Thermal Shock Resistance, points 17 to 23
54 to 68

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 4.2 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.4
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0
Nickel (Ni), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 0 to 0.1
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.4