MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. AWS E100C-K3

206.0 aluminum belongs to the aluminum alloys classification, while AWS E100C-K3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is AWS E100C-K3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.4 to 12
18
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 330 to 440
770
Tensile Strength: Yield (Proof), MPa 190 to 350
700

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
48
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.4
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1150
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 49
130
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 840
1290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 30 to 40
27
Strength to Weight: Bending, points 35 to 42
24
Thermal Diffusivity, mm2/s 46
13
Thermal Shock Resistance, points 17 to 23
23

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 4.2 to 5.0
0 to 0.35
Iron (Fe), % 0 to 0.15
92.6 to 98.5
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0 to 0.050
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5