MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. AWS E316L

206.0 aluminum belongs to the aluminum alloys classification, while AWS E316L belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is AWS E316L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 8.4 to 12
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 330 to 440
550

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 19
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
4.0
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1150
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 30 to 40
19
Strength to Weight: Bending, points 35 to 42
19
Thermal Diffusivity, mm2/s 46
4.0
Thermal Shock Resistance, points 17 to 23
14

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 4.2 to 5.0
0 to 0.75
Iron (Fe), % 0 to 0.15
58.6 to 69.5
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.050
11 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0