MakeItFrom.com
Menu (ESC)

206.0 Aluminum vs. AWS E330H

206.0 aluminum belongs to the aluminum alloys classification, while AWS E330H belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 206.0 aluminum and the bottom bar is AWS E330H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 8.4 to 12
11
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 330 to 440
690

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 570
1350
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
5.4
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1150
180

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 30 to 40
24
Strength to Weight: Bending, points 35 to 42
22
Thermal Diffusivity, mm2/s 46
3.2
Thermal Shock Resistance, points 17 to 23
19

Alloy Composition

Aluminum (Al), % 93.3 to 95.3
0
Carbon (C), % 0
0.35 to 0.45
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 4.2 to 5.0
0 to 0.75
Iron (Fe), % 0 to 0.15
40.5 to 51.7
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0.2 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.050
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0